Kernel Ridge Regression via Partitioning

نویسندگان

  • Rashish Tandon
  • Si Si
  • Pradeep Ravikumar
  • Inderjit S. Dhillon
چکیده

In this paper, we investigate a divide and conquer approach to Kernel Ridge Regression (KRR). Given n samples, the division step involves separating the points based on some underlying disjoint partition of the input space (possibly via clustering), and then computing a KRR estimate for each partition. The conquering step is simple: for each partition, we only consider its own local estimate for prediction. We establish conditions under which we can give generalization bounds for this estimator, as well as achieve optimal minimax rates. We also show that the approximation error component of the generalization error is lesser than when a single KRR estimate is fit on the data: thus providing both statistical and computational advantages over a single KRR estimate over the entire data (or an averaging over random partitions as in other recent work, [30]). Lastly, we provide experimental validation for our proposed estimator and our assumptions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divide and conquer kernel ridge regression: a distributed algorithm with minimax optimal rates

We study a decomposition-based scalable approach to kernel ridge regression, and show that it achieves minimax optimal convergence rates under relatively mild conditions. The method is simple to describe: it randomly partitions a dataset of size N into m subsets of equal size, computes an independent kernel ridge regression estimator for each subset using a careful choice of the regularization ...

متن کامل

Divide and Conquer Kernel Ridge Regression

We study a decomposition-based scalable approach to performing kernel ridge regression. The method is simple to describe: it randomly partitions a dataset of size N into m subsets of equal size, computes an independent kernel ridge regression estimator for each subset, then averages the local solutions into a global predictor. This partitioning leads to a substantial reduction in computation ti...

متن کامل

Multi-view Regression Via Canonical Correlation Analysis

In the multi-view regression problem, we have a regression problem where the input variable (which is a real vector) can be partitioned into two different views, where it is assumed that either view of the input is sufficient to make accurate predictions — this is essentially (a significantly weaker version of) the co-training assumption for the regression problem. We provide a semi-supervised ...

متن کامل

Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression

This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the predictive regression model is based on a shrinkage estimator to avoid overfitting. We extend the kernel ...

متن کامل

A Comparative Study of Pairwise Learning Methods based on Kernel Ridge Regression

Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction or network inference problems. During the last decade kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their beha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1608.01976  شماره 

صفحات  -

تاریخ انتشار 2016